

ADSS Sag and Tension Calculations

Mike Riddle President

April 25, 2024

RCEP COMPLIANT

- Incab America has met the standards and requirements of the Registered Continuing Education Program.
- Credit earned on completion of this program will be reported to RCEP.net.
- Certificates of Completion will be issued to all participants via the RCEP.net online system.
- As such, it does not include content that may be deemed or construed to be an approval or endorsement by the RCEP.

PURPOSE STATEMENT / COURSE DESCRIPTION Registered continuing education program

- In this webinar we will discuss how to obtain the sag and tension data that you need for your project.
- We will explain and illustrate three methods of obtaining sag and tension data as per industry practice today:
 - 1. Using tabulated data supplied by cable manufacturers,
 - 2. Generating data using ACES CATS, and
 - 3. Using PLS-CADD to perform sag and tension calculations.

LEARNING OBJECTIVES

After this class, you will be able to:

- Be able to obtain basic sag and tension data for your ADSS cable using these sources:
 - 1. Tabulated data supplied by cable manufacturers,
 - 2. Self-generated data using ACES CATS (and be able to use it), and
 - 3. Computer programs, in particular PLS-CADD.
- Explain the meaning and importance of a cable's Maximum Rated Cable Load (MRCL), Zero Fiber Strain Margin (ZFSM) and how these should be incorporating into sag and tension data.
- State the implicit assumptions of industry practice for ADSS sag and tension data.
- Explain the difference between mechanically independent and mechanically coupled spans.
- Know when it is more appropriate to apply the ruling span concept and use PLS-CADD or other computer software to generate sag and tension data for ADSS.

Incab University "School of Excellence in Fiber Optics" Agenda

- Introduction
- Course Description
- Learning Objectives
- Presentation
- Q&A (Technical questions only)
- Let's start!

 Let's begin our study of ADSS sag and tension with three observations...

Sag and tension observation 1

- If someone tells you:
 - "Snow and ice don't accumulate on ADSS in the field"
- Please show them this picture
- It is a myth that ice does not accumulate on ADSS!
- Vertical sag under ice loading can exceed ground clearance, and consequently, it must be checked!

Note how large the sag is too

Sag and tension observation 2

- Wind conditions are especially important for ADSS
- ADSS is light and elastic
- Consequently, horizontal blowout during wind loading can be significant and must be checked!

Sag and tension observation 3

- Because ADSS is very elastic, strength is needed to control fiber strain
 - Fiber strain can lead to optical failure over time

OK. This prompts the question: What is fiber strain, and why is it important?

Side Tour: A Quick Primer on Fiber Strain

What is fiber strain, and why is it important?

- Fiber strain is tension on the fiber
- Optical fiber is strong, but it is glass, so it is brittle
 - Thus, keeping tension off the fiber is a good idea \rightarrow enhances reliability
 - "No strain, no problems"
 - Fiber is especially vulnerable to adverse effects from cyclic loading
- Fiber Strain Margin is the difference between the tension on the cable and the tension on the fiber
 - The "Zero Fiber Strain Margin" (ZFSM) is the point at which the optical fibers begin to experience tension
 - General Guideline: The higher the ZFSM, the better

Note: Fiber strain is discussed in detail in our "Understanding the Loose Tube Design Concept" webinar

Let's connect the three observations

- To properly check clearances, sag and tension calculations for ADSS must factor in ice and wind loading
- Industry practice has been to have "installation" or "everyday" (no ice, no wind) sag = 1% or 1.5% of span
 - Example: 300 ft (91 m) span at 1.5%, the sag will be 4.5 ft (1.4 m)
 - More recently, have seen 0.75% and even 0.5%
 - Risky, in my opinion, because of increased tension to do this

And...

Let's connect the three observations

- Fiber strain should be minimized (or zero fiber strain margin maximized)
 - "Best Practice" or "Ideal" is zero fiber strain through "MRCL" (defined on next slide)
 → This is Incab's design standard, but sometimes not practical
- Acceptable alternates (with increasing risk):
 - Zero fiber strain at nominal (unloaded) tension ("everyday"), and...
 - Limited fiber strain at maximum (loaded) tension (MRCL)
 - Good, ≤ 0.2%
 - Conservative limit derived from Corning research
 - Not too bad, $\leq 0.3\%$
 - Acceptable for today's fiber, but does have some risk
 - Risky, $\leq 0.4\%$ **C** Greater than this is just plain crazy!

All cable suppliers have a design policy on fiber strain! (Often you must ask what it is)

Maximum Rated Cable Load (MRCL)

- MRCL (= MRDT "maximum rated design tension" the term used for OPGW) is an especially important cable specification!
 - MRCL = The tension the cable should <u>NEVER, EVER</u> exceed under any design loading condition!
 - MRCL is *NOT* the same as Rated Breaking Strength (RBS)!
 - MRCL is typically in the range of 50 65% of RBS

Data Generation in 3 Easy Steps!

- Step 1 = Review your loading criteria
- Step 2 = Get the cable specifications
- Step 3 = Get or generate the data

Let's explore each step...

Step 1: Review Your Loading Criteria

- Determine your base loading criteria
 - NESC Rule 250B loading zone
 - Alternate for your state or country
- Criteria unique to your utility or project?
 - Tension limits?
 - Sag limits?
- Do you have "extreme ice" or "concurrent wind and ice" conditions?
 - NESC Rule 250C and D
 - Additional criteria for your state or country

Few do, but.

Step 2: Get The Cable Specifications

- Basic cable specifications are needed to generate sag and tension data:
 - 1. Outside diameter (inches or mm)
 - 2. Unit weight (lb/ft or kg/km)
 - 3. Maximum Rated Cable Load (MRCL)
 - 4. Cable modulus (Which to use? We'll come back to that.)
 - 5. Linear expansion coefficient
 - 6. Strain limit. Ideally the "zero fiber strain margin" (ZFSM)
- You'll find these on the cable datasheet or ask the cable manufacturer

→ Let's look at typical cable datasheets from various suppliers and see how they present this information....

Step 2: Getting The Specifications - Incab

• InAir ADSS DJ-144U (12x12)-13kN

	Design details		
	Fiber count		144
	Number of loose tubes		12
	Fibers per loose tube		12
	Number of fillers		-
	Loose tube diameter	mm (in)	3.0 (0.118)
	Inner jacket thickness	mm (in)	0.7 (0.028)
	Outer jacket thickness	mm (in)	1.6 (0.063)
	Cable diameter ± 0.2 (0.008)	mm (in)	20.3 (0.799)
2	Cable weight	kg/km (lb/ft)	298.1 (0.2)
3	Maximum rated design tension = MRCL	kN (lb)	13.0 (2923)
	Zero fiber strain margin	kN (lb)	10.6 (2383)
	Stringing tension (STT)	kN (lb)	3.25 (731)
	Rated breaking strength (RBS)	kN (lb)	20.0 (4497)
	Modulus of elasticity, initial	kN/ mm² (ksi)	3.87 (561)
	Modulus of elasticity, final	kN/mm² (ksi)	4.17 (606)
	10-year modulus of elasticity, creep	kN/mm² (ksi)	3.01 (438)
\sim	Cable cross-sectional area	mm² (in²)	322.4 (0.5)
(5)	Coefficient of thermal expansion, 10 ⁻⁶	1/°C (1/°F)	15.52 (8.62)

Note: We will discuss modulus later

Step 2: Getting The Specifications - Prysmian

72F SM ADSS LONG SPAN PKP 1581LB (12F/T) TR (#ADLT1581-12-HB-072)
 Cable Specifications:

 3 → 1 → 2 → 	 Maximum Rated Cable Load: Cable Diameter: Cross Sectional Area: Cable Weight: Ultimate Tensile Strength: Sheath Configuration: Outer Jacket Type: 	1581 0.508 0.203 0.099 3954 Dual Jacket Track Resistant	lb in in² lb/ft lb	
	Outer Jacket Type:	Track Resistant		

Note 1: Fiber Strain Margin (6) is not directly shown, but is factored into their sag & tension data (will see this later) Note 2: Initial = Final = Not really. This is a simplification that's OK in the distribution world...More on this later

Step 2: Getting The Specifications - OFS

• AT-XXX27D6-048-TMEE-JX

Fension @ Ma	ximum Span for 1 % Installation	n Sag	
3 🔶	Short Term Used as MRCL	1815 kg	4002 lb
6	Long Term (See note 1)	898 kg	1979 lb
Specifications	:		
	Maximum Span	389 m	1276 ft
2 🔶	Cable Weight	0.185 kg/m	0.124 lb/ft
	Cable Diameter	15.2 mm	0.599 in
	Installation Temp	20 C	68 F
④ →	Cable Modulus (See note 12	1002.1 kg/mm^2	1425.6 kpsi Notice oly a
$\overline{\mathbf{S}} \rightarrow$	Linear Expansion Coefficient	0.00000451 1/C	0.00000251 1/stingle value
	Estimated Break Load	3283 kg	7240 lb 🍏

Note 1 6 Fiber Strain Margin is not directly shown. The "Long Term" tension is used as the maximum "everyday" (no ice, no wind) tension, but this tells you <u>nothing</u> about the fiber strain or ZFSM

Step 2: Getting The Specifications - OFS

• AT-XXX27D6-048-TMEE-JX

Fension @ Ma	ximum Span for 1 % Installation	on Sag	
3 🔶	Short Term Used as MRCL	1815 kg	4002 lb
6	Long Term (See note 1)	898 kg	1979 lb
Specifications	: :		
	Maximum Span	389 m	1276 ft
2 🔶	Cable Weight	0.185 kg/m	0.124 lb/ft
1	Cable Diameter	15.2 mm	0.599 in
	Installation Temp	20 C	68 F
④ →	Cable Modulus (See note 2)	1002.1 kg/mm^2	1425.6 kpsi
	Linear Expansion Coefficient	0.00000451 1/C	0.00000251 1/F
	Estimated Break Load	3283 kg	72 4 0 lb

Note 1 (6) Fiber Strain Margin is not directly shown. The "Long Term" tension is used as the maximum "everyday" (no ice, no wind) tension, but this tells you <u>nothing</u> about the fiber strain or ZFSM Note 2 (4) Notice that only a single value is given. More about this soon.

Step 2: Getting The Specifications - AFL

AE0489C521AA1

	Physical / Mechanical / Elec	ctrical Characteristic	Metric	English
	Approximate Cable Diamet	ter	12.7 mm	0.500 in
2	Approximate Cable Weight	t	123 kg/km	0.083 lbs/ft
Ŭ F	Approximate Cable Breaki	ng Strength	564 kg	1,244 lbs
	Minimum Bending Radius	Static	127 mm	5 in
		Dynamic	256 mm	12 in
3	Maximum Rated Cable Loa	ad (MRCL)	285 kg	628 lbs
5	Coefficient of Linear Expan	nsion	3.64E-05 1/°C	2.02E-05 1/°F
4	Cable Modulus	Initial	2.00 kN/mm ²	290.7 kpsi
•		10 Year	1.67 kN/mm ²	242.3 kpsi
		Final	2.16 kN/mm ²	313.5 kpsi

three iiven

Fiber Strain Margin - Not provided by this supplier, nor an "everyday" or long-term limit. You must ask them. (6)

Step 3: Getting Sag and Tension Data

• Three sources

- Traditionally: Manufacturer-provided tables
 - Generally limited to standard NESC loading conditions
 - Ask cable supplier if you need other conditions
- ACES CATS A new, fun, and useful way to generate the data that you need!
 - Can be used for any supplier's cable!
- Generate your own data using Power Line[®] Systems PLS-CADD or Southwire[™] Sag10[®]
 - Will only consider PLS-CADD today

Let's look at each source, starting with <u>data tables</u> from the same four suppliers

Data Tables – Incab Header

ACES CATS Advanced Cable Engineering System for Calculation of ADSS Tensions and Sags

ADSS Sags And Tensions Data

Data Tables – Incab Data

	Nominal/No Loading. Installation Temperature 68 F				
Span (ft)	Sag (ft)	Sag (%)	Tension (lb)		
50	0.75	1.5	83		
100	1.50	1.5	167		
150	2.25	1.5	250		
200	3.00	1.5	334		
250	3.75	1.5	417		
300	4.50	1.5	501		
350	5.25	1.5	584		
400	6.00	1.5	668		
450	6.75	1.5	751		
500	7.50	1.5	835		
550	8.25	1.5	918		
600	9.00	1.5	1002		
650	9.75	1.5	1085		
700	10.50	1.5	1168		
720	10.80	1.5	1202		

At Loading Condition. Temperature -4 F°						
Sag (ft)	% Span (%)	H Sag (ft)	V Sag (ft)	Tension (lb)		
0.94	1.9	0.48	0.81	493		
2.43	2.4	1.24	2.09	758		
4.21	2.8	2.14	3.62	987		
6.17	3.1	3.15	5.31	1196		
8.29	3.3	4.23	7.13	1390		
10.54	3.5	5.38	9.07	1575		
12.90	3.7	6.58	11.10	1752		
15.36	3.8	7.83	13.21	1922		
17.90	4	9.13	15.40	2088		
20.52	4.1	10.46	17.65	2248		
23.21	4.2	11.83	19.96	2405		
25.96	4.3	13.24	22.33	2558		
28.78	4.4	14.68	24.76	2708		
31.65	4.5	16.14	27.23	2856		
32.82	4.6	16.74	28.23	2914		

"Sag" is total.

"H Sag" = horizontal component to check blowout

"V Sag" = vertical component to check ground clearance

Data for "Everyday" condition (no wind, no ice)

Data for loaded condition

Data Tables – Prysmian Header

ADSS SAG AND TENSION PROPERTIES

Require	ements of:	Custor	mer		
	Fiber Count: Maximum Span: Installation Sag: Installation Temperature: Fiber Strain:	72 775 1.5 60 SafeStrain	Fibers ft % °F	= Fiber strain = 0 at "everyday	y" and <u><</u> 0.2% at MRCL
Cable S	pecifications:				
Cable Data –	Maximum Rated Cable Load: Cable Diameter: Cross Sectional Area: Cable Weight: Ultimate Tensile Strength: Sheath Configuration: Outer Jacket Type:	1581 0.508 0.203 0.099 3954 Dual Jacket Track Resistant	lb in in² lb/ft lb		For comparison.
Loading	g Conditions:	NESC Medium	ı		"ZeroStrain" means:
Loading Conditions -	Ice Thickness: Wind Pressure: Temperature: Safety Factor: Maximum Space Potential: Maximum Space Potential	0.25 4.0 15 0.20 25.0 15.0	in psf ⁰F Ib/ft kV kV	Low Pollution per IEEE 1222-2011 High Pollution per IEEE 1222-2011	and 0 at MRCL
Cable De Pai	escription: 72F SM	ADSS LONG S	PAN F 581-12	2KP 1581LB (12F/T) TR -HB-072	

Data Tables – Prysmian Data

Span	Insta S	llation ag	Install. Tension
ft	ft	% Span	lb
77.5	1.2	1.5%	64
155.0	2.3	1.5%	128
232.5	3.5	1.5%	191
310.0	4.7	1.5%	255
387.5	5.8	1.5%	319
465.0	7.0	1.5%	383
542.5	8.1	1.5%	447
620.0	9.3	1.5%	510
697.5	10.5	1.5%	574
775.0	11.6	1.5%	638

Installation

Data for installation and "Everyday" condition (no wind, no ice)

	Maximum					
Span ft	Loaded Vert. Sag ft	Loaded Horiz. Sag ft	Maximum Tension Ib	Cable Angle Degrees	No Wind Vert. Sag ft	Notice: "Ice Only"
77.5 155.0 232.5 310.0 387.5 465.0 542.5 620.0 697.5 775.0	1.1 2.8 4.8 7.1 9.4 11.9 14.6 17.3 20.1 23.0	1.1 2.9 4.9 7.1 9.5 12.0 14.6 17.4 20.2 23.1	317 505 668 817 956 1089 1216 1339 1459 1575	45 45 45 45 45 45 45 45 45 45	1.5 3.6 6.2 9.0 12.0 15.2 18.5 22.0 25.5 29.2	vertical sag

Data for loaded condition

"Horiz. Sag" = horizontal sag to check blowout

"Vert. Sag" = vertical sag to check ground clearance

Notice that the sag is set to 1.5% of span

Data Tables – OFS Header

Sag and Tension Data Generation Data Tables – OFS Data

Data for "Everyday" condition (no wind, no ice)

No Loading @ Install Temperature 68 F

-	<u> </u>	•	
Span	Sag	Install Sag	Tension
ft	ft	%	lb
100	1.0	1.00	155
200	2.0	1.00	310
300	3.0	1.00	465
400	4.0	1.00	620
500	5.0	1.00	775
600	6.0	1.00	930
700	7.0	1.00	1085
800	8.0	1.00	1241
900	9.0	1.00	1396
1000	10.0	1.00	1551
1100	11.0	1.00	1706
1200	12.0	1.00	1861
1276	12.8	1.00	1979

Data under loaded conditions "H Sag" = horizontal sag to check blowout "V Sag" = vertical sag to check ground clearance

	All Lo	ading Conditions	@ Temperature 30 F
Vertical Sag	Tension	Vertical Sag	Horizontal Sag
% of Span	lb	ft	<u>Ĵ</u>
0.2	618	0.2	2.2
0.3	1027	0.6	5.4
0.3	1378	1.0	9.0
0.4	1699	1.5	13.0
0.4	2001	1.9	17.3
0.4	2286	2.4	21.8
0.4	2560	2.9	26.5
0.4	2826	3.5	31.3
0.4	3084	4.0	36.3
0.5	3335	4.6	41.5
0.5	3581	5.2	46.7
0.5	3822	5.8	52.1
0.5	4002	6.3	56.3 Notice
			how much
			blowout!

Angle

Data Tables – AFL Header

Cable Specs

Fel: 1 800 235 3423 Fax: 1 864 433 5560	AE0489C52	1AA1	
Physical / Mechanical /	Electrical Characteristic	Metric	English
Approximate Cable Dia	meter	12.7 mm	0.500 in
Approximate Cable We	ight	123 kg/km	0.083 lbs/ft
Approximate Cable Bre	aking Strength	564 kg	1,244 l bs
Minimum Bending Rad	ius Static	127 mm	5 in
	Dynamic	256 mm	12 in
Maximum Rated Cable	Load (MRCL)	285 kg	628 lbs
Coefficient of Linear Ex	xpansion	3.64E-05 1/°C	2.02E-05 1/°F
Cable Modulus	Initial	2.00 kN/mm ²	290.7 kpsi
	10 Year	1.67 kN/mm ²	242.3 kpsi
	Final	2.16 kN/mm ²	313.5 kpsi

Note: Neither "Maximum Everyday" nor ZFSM/fiber strain info shown You must ask

Sag and Tension Data Generation Data Tables – AFL Data

	Span Length (ft)	400	← Note: Ju	ist for one	span le	ngth (wł	nich allow	s them to	o show m	ultiple load	ling conditions)
				Add'l	1	nput Dat	ta		Resu	iltant Data	
Data for		Wind	Radial Ice	Load	Vert.	Horiz.	Vector	Vert.	Horiz	Vector	Tension
Everyday	Condition	(mi/hr)	(inches)	(lbs/ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(lbs)
wind, no ice)	Installation				4.0			4.00		4.0	415
	Ice Alone										
	Wind Alone										
Loading Conditions -	Ice and Wind										
	NESC Light	60.0		0.1				3.09	14.3	14.6	605
	Other										
	Standard NESC	/ CSA co	ondition base	ed on Ice	Density	of 57 lbs	/ft³				
									"Ho	riz." = hori check b	zontal sag to lowout
									"\ ch	/ert." = ver eck groun	tical sag to d clearance

Generating Your Own Data Using ACES CATS

Recall your second option is to generate your own data using ACES CATS

- It's your data and you need it now!
- Greatly facilitates "what if" analysis
- Fast, easy, and fun
 - (Perhaps I've been working with aerial cables too long)

Can use for *any* supplier's cable!

• You just need the basic cable data that we have discussed

Generating Your Own Data Using ACES CATS

• Go to <u>www.incabamerica.com</u> and then select The Configurator[™] followed by ACES CATS...

The Configurator ™

ACES : Advanced Cable Engineering System

ACES OPGW	ACES OPGW	ACES ADSS	ACES ADSS cable selection only
complete system	cable selection only	complete system	
ACES SPOT calculation of space potential	ACES CATS calculation of tension and sag		

Generating Your Own Data Using ACES CATS

• Enter the cable data (all as we have discussed) in either customary or metric units (enter in either units...program automatically converts to the other)

Calculation of ADSS Tensions and Sags															
分 Save ♀ Open	You can save and	You can save and re-use your data													
Initial data entry	Initial data entry														
Please enter the necessary	initial data in the fields														
Project name		Cable description													
Mike Test		InAir ADSS DJ-144U (12x12)-13kN													
Cable specifications															
Cable diameter		Cable weight													
mm	in	kg/km	lb/ft												
20.3	0.799	298.1	0.2												
Cable modulus		Coefficient of thermal	Coefficient of thermal expansion												
kN/mm²	kpsi	1/°C. 10-°	1/°F, 10-6												
3.9	566	27.94	15.52	15.52											
Maximum Rated Design To	ension (MRDT). Maximum load	Maximum Everyday Ter	nsion (EDT)												
kN	lbs	kN	lbs												
13	2 923	10.6	2 383												

Generating Your Own Data Using ACES CATS

• Select loading conditions or enter your own

Loading condition									
Select preset condition									
NESC Heavy	~								
Ice thickness		Wind pressure							
mm	in	N/m ²	psf						
12.7	0.5	191.5	4						
K factor		Temperature at loading condition							
N/m	lbf/ft	C°	F°						
4.38	0.3	-20	-4						
Initial sag		Installation temperature							
(% Span)		C°	F°						
1.5		20	68						
Calculate									

Then hit "Calculate"

Generating Your Own Data Using ACES CATS

• Receive your data!

Unit system

Can change unit system

	Nominal / No loa	ding. Installation temperature	68 F°				
Span (ft)	Sag (ft)	Span (%)	Tension (lb)				
50	0.75	1.5	83				
100	1.5	1.5	167				
150	2.25	1.5	250				
200	3	1.5	334				
250	3.75	1.5	417				
300	4.5	1.5	501				
350	5.25	1.5	584				
400	6	1.5	668				
450	6.75	1.5	751				
500	7.5	1.5	835				
550	8.25	1.5	918				
600	9	1.5	1002				
650	9.75	1.5	1085				
700	10.5	1.5	1168				
720	10.8	1.5	1202				
120	10.0	1.5	1202				

At loading condition. Temperature -4 F°												
Sag (ft)	Span (%)	H Sag (ft)	V Sag (ft)	Tension (lb)								
0.93	1.9	0.48	0.8	494								
2.43	2.4	1.24	2.09	760								
4.19	2.8	2.14	3.61	990								
6.16	3.1	3.14	5.29	1199								
8.27	3.3	4.22	7.11	1394								
10.51	3.5	5.36	9.04	1580								
12.87	3.7	6.56	11.07	1757								
15.32	3.8	7.81	13.17	1928								
17.85	4	9.1	15.36	2093								
20.46	4.1	10.44	17.6	2254								
23.15	4.2	11.8	19.91	2411								
25.9	4.3	13.21	22.28	2565								
28.71	4.4	14.64	24.7	2715								
31.58	4.5	16.1	27.16	2863								
32.74	4.5	16.69	28.16	2922								

Can download as a pdf for reference or to share with colleagues, friends, or family!

Critically Important Caveat!

All of the preceding reflects current industry practice, but strictly speaking, it is <u>not</u> correct!

- Two things are "not quite right"...
- 1. Using only the **initial value** for **modulus** implies that ADSS is perfectly elastic with no difference between initial and final modulus, plus no creep!
 - We know this is *not* the case
 - Confirmed by the fact that 3 of 4 manufacturers gave different modulus values for initial, final, and 10-year/creep

Critically Important Notes!

- 2. Spans are treated individually, as if each is double-dead-ended
 - Only true if each span strung and clipped individually
 - Yields "Mechanically Independent" spans (Illustrated on next slide)
 - Such as "moving reel" installation with trunnion-type <u>support</u> clamps
 - In contrast, often(?) "controlled tension" stringing (tensioner and pulling line) across multiple spans is used
 - Plus, with <u>suspension</u> clamps instead of trunnion-type supports
 - "Mechanically coupled" spans
 - Therefore, the "ruling span" concept governs the sag and tension
 - Tension equalizes across all spans with sag greatest in longer spans
 - Effectively, a weighted average (exact formula to follow soon)

Yikes! Was everything to this point just a waste?

Hold that question for just a few moments, please

Mechanically Independent Spans

Supports create fixed points at each pole, so spans are mechanically independent

Mechanically Coupled Spans

The articulation of a suspension clamp makes the spans mechanically coupled

Sag and Tension Data Generation Understand The Limitations

• So, was everything up to slide 36 a waste?

No! It just means you need to understand the limitations of our methodology so far!

- For "short" to "medium" spans in a distribution environment, the theoretical error is acceptable
 - We know this is from experience, i.e. No problems in reality
 - For ADSS, the change in sag and tension between installation (initial modulus) and final (final plus creep modulus) conditions is much lower than for metal cables (about half)
 - Consider too sagging inaccuracies in the field
 - This "real world factor" alone likely washes out the theoretical error
- Ergo ipso facto: Consider our method thus far the "Simplified Sag and Tension Solution"

Sag and Tension Data Generation When To Use What

• OK, but now this leads to two questions:

- 1. When is it appropriate to use the so-called Simplified Solution?
 - First consider: What's a "short" and "medium" span?
 - Spans under 500 600 ft (\approx 150 200 m) and standard NESC loading conditions (or similar if outside the US)
 - Distribution circuits
- 2. What should I use when the so-called Simplified Solution is *not* appropriate?
 - → Use the Ruling Span concept in conjunction with sag and tension analysis software such as Power Line® Systems PLS-CADD or SouthwireTM Sag10[®]
 - Recall that these are the third source of sag and tension data

Ruling Span Concept - Defined

• Mathematically:
$$S_R = \sqrt{\frac{\sum S^3}{\sum S}} = \sqrt{\frac{S_1^3 + S_2^3 + \dots S_n^3}{S_1 + S_2 + \dots S_n}}$$

where: S_R = the theoretical ruling span $S_1,S_2, ..., S_n$ = are the 1st, 2nd, ... nth span length respectively

- In words: The square root of the sum of the spans cubed divided by the sum of the spans
 - Effectively a weighted average leaning towards the longer spans

Note: The ruling span is very easily calculated in Excel from a list of the spans. PLS-CADD can also do it for you.

Ruling Span Concept - Example

		Span L	.ength
Span	Section	ft	m
1	Pole 1 - Pole 2	217	66
2	Pole 2 - Pole 3	197	60
3	Pole 3 - Pole 4	246	75
4	Pole 4 - Pole 5	213	65

 $S_R = \sqrt{(217^3 + 197^3 + 246^3 + 213^3)/(217 + 197 + 246 + 213)} = 220.4 \text{ ft}$ $S_R = \sqrt{(66^3 + 60^3 + 75^3 + 65^3)/(66 + 60 + 75 + 65)} = 67.2 \text{ m}$

Compare: Average span = 218.25 ft or 66.5 m, so difference about 1%

Back To PLS-CLADD - Set up Your .WIR File

- Hint: It's good to know how to do this procedure and to understand what's in a .WIR file, but...
 - It's easier if you just ask for a .WIR file from the cable manufacturer
 - You can find a library of .WIR files by cable manufacturer at <u>www.powline.com/files/cables</u>
- Consequently, we will talk about this process very generally and very quickly
- Editing .WIR files for ADSS is not for the faint of heart!
 Proceed with extreme care!

Sag and Tension Data Generation Working With .WIR Files

- You can open a .WIR file by right-clicking on it, selecting "Open With", and then selecting "Notepad"
 - It's a text file, so Notepad works best
- After editing it, save the new .WIR file
- Then, load the new .WIR file into PLS-CADD, complete your problem file, and let the program compute the sag and tensions for you

Sag and Tension Data Generation Back To PLS-CLADD - Set up Your .WIR File

• It's best to start with a "donor" .WIR file for ADSS and edit the data as in this example:

	aWir File template - ADSS - Notepad													
	File Edit Format View Help													
	TYPE='CABLE FILE' VERSION='14' UNITS='US' SOURCE='PLS-CADD Version 14.55' USER='Power Line Systems, Inc.'													
	Incab ADSS DPD-E-48U (4x12)-12kN													
	Incab Cable supplier													
	0 0	Reminders:												
Required by	DPD-E-48U (4x12)-12kN Cable designation, repeated	MRDT = MRCL												
program	0 10000	RBS ≠ MRCL – Ramifications explained soor												
	0.259 (Cross-sectional area, in^2) Cross-sectional area													
	0.575 (Diameter, in) Diameter Edit this data only													
	0.137 (weight, 1b/ft) Unit weight	DDC												
	2698 (Rated tensile strength (RTS) a.k.a rated breaking strength)	RD5												
	DATA ON THIS LINE IS NOT USED (Note: <u>MRDT = xxxx lb</u>) (Add a note with	h the "maximum allowed tensile stren												
Instead of stress-	0 12680 0 0 0 (The second number is the initial modulus, using ksi	value x 10)												
strain coefficients,	0 9010 0 0 0 (The second number is the "10-year modulus of elastic	city", using ksi value x 10)												
see notes at right	14290 (The final modulus, using ksi value x 10)													
	0.00058 (Thermal coefficient of expansion with decimal place	shifted 4 places to the left)												
	-459.67 0 0 0 0 (No change) Don't touch anything below this line ("Here be	dragons!")												
program —	25 0 0 0 0 0 0 0 0 0 0 0 32 (No change after here EXCEPT for file	name in line that starts with "TYPE												

Continued on next slide...

Sag and Tension Data Generation Back To PLS-CLADD - Set up Your .WIR File

Don't touch anything below this line ("Here be dragons!")

	25	0	0	0 0	0	0 0	0 0	0 0	0	0 0	32	(No	chang	ge a	fter	here	EXCEPT	for	file	name	in	line	that	starts	with	"TYPE
Required by program	0 0 70 0 1 0 1 0 0 25 TY 4 {\ {\ \∨	0 (0 (; ; ; ;) ; (0 : : ; (1 (5 : : ; (1 (5 : : ; (1 (5 : : ; (1 (5 : : ; (5 : : ; (5 : :);) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0	0 0 pt pt 1e_ 32 0 0 rop ans tb1 nd4	s fil 0 0 ert i\a ;\	.e_t 0 0 .nsi .rec :1\p	lote	≥) 0 ss F g125 gree l\cf	ile 2\d n0\ 1\f	e'∖ leff blu 0\f	/ERSI ©\de ie0;} ≤s20	ON=' flan	1' UN] g1033{	TS=	'US' nttb]	SOURC L{\f0\	E='PLS	-CADI n\fp	D Ver: rq1\f	sion : charse	14.5 et0	55' U Cour:	SER='I	Power L ew;}}	ine Sy	/stems

Sag and Tension Data Generation Critical Final Step

Remember MRCL? It's critical! And, ZFSM is darn important too!

- You must <u>manually</u> check that tension never, ever exceeds the cable's MRCL in PLS-CADD and Sag10!
 - If it does, you risk optical problems (short term, long term, or both)!
 - If it does, you risk a voided warranty!
- Repeat: The tension under any and all conditions must never, ever exceed the cable's MRCL!
 Important
- You must also check the "everyday" condition to make sure that that tension does not exceed the cable's ZFSM! [Important]

Recap Now you know...

- How to obtain basic sag and tension data for your ADSS
- The three means of obtaining that basic sag and tension data
- The meaning and importance of ZFSM and MRCL
 - Plus, guidelines to what ZFSM and MRCL you should specify
- The difference between mechanically coupled and mechanically independent spans and how this is important to sag and tension calculations
- The differences between "simplified sag and tension calculations" and those made using the "ruling span concept" and when each method is appropriate
- How to run your own ADSS sag and tension calculations

Homework!

Please reinforce your learning today by putting it into action!

- Please take a test run of Incab's ACES CATS
 - Reminder: select The Configurator[™] at <u>www.incabamerica.com</u>
- Ask at least one other ADSS supplier for their sag and tension data for an ADSS
 - Identify all the key data that's needed for sag and tension calculations (reference slide 16)
 - Identify the cable's ZFSM (Ask the supplier, if necessary)
 - Identify the cable's MRCL
 - Identify the cable's fiber strain at MRCL (Ask the supplier, if necessary)
- Bonus: Run sag and tension calculations on any ADSS cable using PLS-CADD or Sag10

Note: I will maintain "office hours" to help in the form of being available via MS Teams (mike.riddle@incabamerica.com)

Thank you Questions?

INCABAMERICA.COM